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SUMMARY

The Dirichlet process prior (DPP) is used to model an unknown probability distribution, F : This eliminates
the need for parametric model assumptions, providing robustness in problems where there is significant
model uncertainty. Two important parametric techniques for learning are extended to this non-parametric
context for the first time. These are (i) sequential stopping, which proposes an optimal stopping time for on-
line learning of F using i.i.d. sampling; and (ii) stabilized forgetting, which updates the DPP in response to
changes in F ; but without the need for a formal transition model. In each case, a practical and highly
tractable algorithm is revealed, and simulation studies are reported. Copyright# 2007 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

All Bayesian methods for inference of an unknown quantity, x; require a probability
distribution (i.e. model), FðxÞ; to be elicited. It can be difficult to propose such a model, and, if
we do, resulting inferences and decisions may not be robust, in the sense that they may be
affected greatly by modelling errors reflected in F : A parametric model, FðxjyÞ; involving a
finite-dimensional unknown parameter, y; is more flexible. Here, we elicit a prior on y; and can
therefore explore the set of distributions generated by the allowed values of y: A countable
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number of parametric models, FiðxjyiÞ; can also be compared [1], but, once again, there may be
strong dependence on the choice of models, and their associated parameter priors, FiðyiÞ:

The classical non-parametric approach [2] is to build F only from the data, via the empirical
distribution,

P
n dxn ; which places probability mass only at i.i.d. observations, xn; of x: Kernel

density estimation is concerned with finding smooth variants of this, via convolution for
example. Other density estimation techniques}such as the maximum entropy (MaxEnt)
method [3]}match selected moments of the empirical distribution, subject to some desirable
regularization property (smoothness in the case of MaxEnt).

Bayesian non-parametrics [4–6] generalize the empirical approaches above by placing a
probability distribution, F; on the unknown distribution, F : Hence, a hierarchical modelling
approach is taken

x� F and F �F

Here, ‘�’ denotes ‘is distributed as’. F is the non-parametric process andF is the non-parametric
process prior. Since, Fð�jFÞ ¼ Fð�Þ; we may also view F as an infinite-dimensional ‘parameter’,
generalizing the rôle of y in parametric inference [7]. A special case is when x is finite-state
(i.e. discrete) a priori, in which case F is expressible as a finite set of unknown probabilities, p:
Then, F ¼ Fp is a parametric prior on the ‘parameters’ p in the finite measurable simplex,
D (see (4) in Section 2). The Dirichlet distribution, D; is the key example of Fp; occupying
the important rôle of conjugate prior for independent, identically distributed (i.i.d.) sampl-
ing from multinomials [1]. Its generalization to a non-parametric measure on continuous
probability distributions yields the Dirichlet process prior (DPP) [8], D; which is the non-
parametric model adopted in this paper. The Dirichlet process prior is favoured in the literature
for its convenient property of being conjugate under i.i.d. sampling from the unknown
measure, F :

Parametric modelling dominates in signal processing and control, and so it is not surprising
that a number of important techniques for on-line learning have been framed only in the
parametric context, relying, apparently, on prior elicitation of Fðx; yÞ: The main purpose of this
paper is to extend two important techniques for on-line learning to the non-parametric context.
These are:

(1) to assess the convergence of D ¼ Dn; under i.i.d. sampling, fx1; . . . ; xng; from F ; and to
use this to design sequential stopping rules for i.i.d. sampling. This extends previous results
on parametric stopping [9, 10];

(2) to track slowly non-stationary Dirichlet processes, Ft; via a tractable updating of our
knowledge, expressed by Dt: This is achieved by extending the stabilized forgetting
procedure [11] to the non-parametric case.

In Section 2, we review those properties of the DPP which we will use later, notably its
relationship to the Dirichlet distribution, as well as its moment properties. In Section 3, we
address Problem 1 above, using Bayesian decision theory to design the stopping rules. Hence,
the Kullback–Leibler Divergence (KLD) [12, 13] will be central to assessing convergence of Dn:
The Dirichlet process prior infers discrete distributions almost surely (a.s.), and so a technical
difficulty arises in attempting to derive a partition-independent KLD. The problem is overcome
via data-dependent partitioning (Section 3.3), and the appropriate algorithm (Algorithm 1) is
presented. In Section 4, we address Problem 2 above, showing that (i) the stabilized forgetting
operator may be applied to non-parametric priors, and, in particular, that (ii) the class of DPPs,
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Dt; is closed under this operator. This leads to a very flexible and tractable algorithm for
i.i.d. learning of a non-stationary Dirichlet process (Section 5). The stopping and tracking
algorithms are explored in simulations in Section 6. Discussion of the potential scope of
these non-parametric techniques follows in Section 7. Overall conclusions (Section 7) close
the paper.

2. THE DIRICHLET PROCESS, F � Dð #F0; n0Þ

Let Xn be the space of elementary events, x; and let A be a s-algebra of subsets of Xn; being
measurable events for x: Let F be the unknown probability distribution (measure) on
the measurable space, ðXn;AÞ; of x: Consider the special case when ðXn;AÞ ¼ ðRm;BÞ; where
B is the s-algebra of Borel subsets of Rm: Then the distribution of x 2 Rm may be specified
by F � FðxÞ; which we use to denote either the unknown probability (density) function
(p.(d.)f.) or cumulative distribution function of x [14], with the context making clear which
is meant.

In general, F is a non-parametric stochastic process [8], whose measurable space is ðFn;AF Þ:
Hence, Fn is a function space in the case Xn ¼ Rm above. Details of the required s-algebra, AF ;
of Fn may be found in [7] or [8]. Let F be a probability distribution on ðFn;AF Þ; being an
appropriate prior for the non-parametric process, F : The distribution, F; is defined by
specifying the distribution of the finite set of unknown probabilities, ðFðA1Þ; . . . ;FðAqÞÞ; induced
by F on every finite set of pairwise disjoint sets, Ai 2 A: The conditions under which F is
uniquely defined are given, for example, in Theorem 1 of [6].

In this paper, we will employ the DPP as our non-parametric prior

F � Dð #F0; n0Þ � D0 ð1Þ

Here, the unknown distribution, F ; is the Dirichlet process, #F0 is an arbitrary known probability
measure on ðXn;AÞ; and 05n051 is a known real scalar. The rôle of the subscripts, ‘0’, will
emerge in Section 3. Qualitatively, (i) D0 places mass on a space of distributions ‘centred’ on #F0;
with the mass concentrating on #F0 as n0 increases; and (ii) for every finite measurable partition
of Xn (defined below), the unknown probabilities, p; induced by F have the (parametric)
Dirichlet distribution, D: An important limitation of (1) is that it generates discrete distributions
with probability one. The practical construction of these discrete realizations from D0 is given in
[7]. The a.s. discreteness of the Dirichlet process will create difficulties for us when we attempt to
refine the partition of Xn (Section 3). This limitation can be overcome by using extended DPPs,
such as the mixture of Dirichlet process model. A thorough review of this and other non-
parametric process priors is available in [6].

We now summarize more formally the consequences of the DPP (1) relevant to our work,
noting that I below constitutes the formal definition.

2.1. Relationship to the Dirichlet distribution

Definition 1 (Quantization operator, QPK
; and induced measure)

Let

PK ¼ fXn

1 ; . . . ;X
n

Kg � A; K51
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be any finite measurable partition of Xn: Define the associated quantization operator, QPK
½x�;

on Xn

QPK
: Xn !Nþ

QPK
½x� ¼ fk : wXn

k
ðxÞ ¼ 1g ð2Þ

where wAðxÞ ¼ 1; if x 2 A; zero otherwise, is the indicator function on the set A: If F is a
probability measure on ðXn;AÞ; then the induced measure on PK}i.e. on the random variable
(r.v.) k (2)}is the multinomial distribution, p ¼ ½p1; . . . ; pK �0; where pk ¼ FðXn

k Þ; k ¼ 1; . . . ;K :
The following notation is used:

F !
QPK

p

Note
If f %x1; . . . ; %xKg is an alphabet of symbols representing the K partition cells, respectively, then %xk
is called the quantized value of x; if QPK

½x� ¼ k (2). For convenience, we will assume that these
symbols are chosen such that %xk 2 Xn

k ; 8k:

Consider the Dirichlet process, F � Dð #F0; n0Þ

#F0 !
QPK

#p0

F !
QPK

p

Then the unknown multinomial, p; has a Dirichlet Distribution, expressed via its p.d.f., with
parameters #p0 and n0

Dð #F0; n0Þ !
QPK

Dð#p0; n0Þ ¼ a�1ð#p0; n0Þ
YK
i¼1

p
n0 #p0;i�1
i wDK

ðpÞ

p� Dð#p0; n0Þ ð3Þ

Here

DK ¼ p pk50; k ¼ 1; . . . ;K ;
XK
k¼1

pk ¼ 1

�����
( )

ð4Þ

is the standard simplex in RK for the K-term multinomial, p; equipped with a s-algebra of Borel
sets induced by AF : Furthermore

að#p0; n0Þ ¼
QK

k¼1 Gðn0 #p0;kÞ
Gðn0Þ

is the normalizing constant, where Gð�Þ is the Gamma function [15].
We recall that Dð#p0; n0Þ [8] has the following mean and variances, respectively:

EDð#p0;n0Þ½p� ¼ #p0

VARDð#p0;n0Þ½pk� ¼
#p0;kð1� #p0;kÞ

n0 þ 1
; k ¼ 1; . . . ;K ð5Þ

where the subscript of E specifies the distribution used in the expectation.
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Later, we will use the KLD [12], KLD½f jj*f �; which measures the proximity of a density, f ðxÞ; to
another density, *f ðxÞ:

KLD½f jj*f � ¼
Z

f ðxÞ ln
f ðxÞ
*f ðxÞ

� �
dx ð6Þ

We note that (i) if *f ðxÞ ¼ 0 implies that f ðxÞ ¼ 0 a.s., then KLD½f jj*f �51; and (ii) KLD½f jj*f � ¼ 0
iff *f ðxÞ ¼ f ðxÞ a.s.

Lemma 1
Let p; q 2 DK be two multinomials, with p� Dð#p; npÞ; q� Dð#q; nqÞ: Then

KLD½Dð#p; npÞjjDð#q; nqÞ� ¼
XK
k¼1

ðnp #pk � nq #qkÞcðnp #pkÞ þ ln
Gðnq #qkÞ
Gðnp #pkÞ

� �� �

� ðnp � nqÞcðnpÞ þ ln
GðnpÞ
GðnqÞ

� �

where cðnÞ ¼ ðd=dnÞlnðGðnÞÞ is the digamma (psi) function [15].

2.2. Learning under i.i.d. sampling

Let

xi�
iid

F ; i ¼ 1; . . . ; n

fxgn � fx1; . . . ;xng ð7Þ

be n i.i.d. samples from the unknown distribution, F (1). Occasionally, we will refer to fxgn (7)
as the data. The formal meaning of i.i.d. sampling from a non-parametric process is given as
Definition 2 in [8]. Under i.i.d. learning, the a posteriori distribution of F is also Dirichlet

F jfxgn �Dð #Fn; nnÞ � Dn

nn ¼ n0 þ n

#Fn ¼
1

nn
½n0 #F0 þ n *Fn� ð8Þ

*Fn is the empirical distribution on ðXn;AÞ; given i.i.d. samples fxgn (7) [2, 6]

*Fn ¼
1

n

Xn
i¼1

dxi ð9Þ

Here, dxi is the probability measure with unit mass (i.e. degenerate) at xi [8].

2.3. The mean distribution

EDð #F0;n0Þ
½F � ¼ #F0 ð10Þ
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2.4. The expectation of gðxÞ

Consider a real-valued (moment) transformation, gx; defined on ðXn;AÞ: EF ½gx� is therefore a
random variable, and

EDð #F0;n0Þ
½EF ½gx�� ¼ E #F0

½gx� ¼
Z

gx d #F0

assuming that E #F0
½jgxj�51 [8]. When ðXn;AÞ ¼ ðRm;BÞ; then, from (8), the posterior mean of

gðxÞ; given i.i.d. samples fxgn (7), is

EDð #Fn;nnÞ
½EF ½gðxÞ�� � #gðxÞn ¼

1

nn
n0 #gðxÞ0 þ

Xn
i¼1

gðxiÞ

" #
ð11Þ

where #gðxÞ0 ¼
R
gðxÞ d #F0ðxÞ is the prior mean.

2.5. The predictive distribution

Lemma 2
If F � Dð #F0; n0Þ (1), then Fn}the predictive distribution on ðXn;AÞ given i.i.d. samples fxgn (7)
from F}is #Fn (8).

Proof
Since F jfxgn � Dð #Fn; nnÞ (8), then, by definition

Fn � EDð #Fn;nnÞ
½F � ¼ #Fn

using (10). &

From 2.1–2.5, we conclude the following:

* The Dirichlet process prior, Dð #F0; n0Þ (1), which places probability on the (function) space,
Fn; is a generalization of the Dirichlet Distribution, Dð#p0; n0Þ (3), which places probability
on the multinomial simplex, DK : Dð #F0; n0Þ allows the unknown probabilities on any sets in
A to be modelled. In particular, the unknown multinomial induced on any finite
measurable partition, PK ; K51; of Xn is modelled, whereas Dð#p0; n0Þ is specific to just one
such partition. Dð #F0; n0Þ may be understood as a non-parametric model at the input to a
specific quantizer of x (2), and Dð#p0; n0Þ is the (parametric) model for the quantizer output,
y ¼ QPK

½x�; consistent with the input model and this specific quantizer.
* Dð #F0; n0Þ is the conjugate non-parametric prior for i.i.d. sampling from an unknown

distribution F (see (1) and (8)). This generalizes the rôle fulfilled by Dð#p0; n0Þ as the
conjugate prior for Bayesian learning of an unknown multinomial, p; under i.i.d. sampling.

* From (10), we recognize #F0 as the mean function of the Dirichlet process, sometimes known
as the ‘centre’ or ‘base measure’ [5] of D: From (5), n0 may be interpreted as the precision
parameter of Dð #F0; n0Þ; controlling the degree to which probability mass is localized
around #F0: From (8), n0 may also be interpreted as the unnormalized weight (in units of
‘number of i.i.d. samples’) of the prior.

* Known base measure, #F0; may itself be parameterized. These parameters, and n0; can be
modelled hierarchically, as described in [6, 16].
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* From (8), we note that the sufficient statistics for identification of F are the complete i.i.d.
sample set, fxgn; itself. This generalizes}to uncountable spaces Xn}the case of the
Dirichlet distribution for the unknown measure, p; on a fixed partition, PK : In this case,
the sufficient data statistics are the counts (see (3))

kn � ðnn #FnðXn

1 Þ; . . . ; nn #FnðXn

K ÞÞ ð12Þ

2.5.1. Non-informative prior, Dð0Þ

If n0 ¼ 0 for any F0; then, from (8)

nn ¼ n and #Fn ¼ *Fn

From (10), the minimum Bayes’ risk estimate of F under quadratic loss is the classical choice in
this case, namely the empirical distribution, *Fn [6, 17]. For this reason, we will regard

Dð #F0; 0Þ � Dð0Þ

as the non-informative non-parametric prior for F [6]. The induced Dirichlet distributions, Dð0Þ;
are improper.

3. A STOPPING RULE FOR ON-LINE I.I.D. LEARNING OF F

A fundamental problem in designing a learning algorithm is to propose an optimal number, N;
of data for reliable inference of a quantity of interest. The Bayesian perspective views this as a
decision task, minimizing the expected loss (i.e. maximizing the expected utility) [17] associated
with a particular choice of N: Bayesian parametric stopping is reviewed in [18], while a non-
parametric method, using the Bayesian bootstrap, has recently been proposed in [19]. These
are a priori methods, in that the decision is taken before sampling begins. A more useful
paradigm for on-line learning is sequential stopping, where a choice N5n is made, based on the
current data fxgn (7). Bayesian sequential stopping for particular parametric models was
derived in [9] using a quadratic loss function. More recently, the KLD [12] between consecutive
parametric densities was used for sequential stopping [10]. The parametric treatment has two
shortcomings:

(1) the tractability of the computations is highly dependent on the choice of models;
(2) in the initial stages of sampling, when the number of samples, n; is small, there is need for

robustness to the choice of model, since model checking is unreliable [6, 19].

In order to overcome both of these difficulties, we will relax the parametric assumption via an
unknown distribution, F ; and model our evolving knowledge of F using the non-parametric
DPP (1). Firstly, we review the parametric case.

3.1. Parametric sequential stopping

We assume that the posterior p.d.f., f ðyjDnÞ � fn; on unknown parameters, y 2 Yn; is available,
given sequential observations, Dn ¼ ½d1; . . . ; dn�: The notation, Dn; emphasizes the fact that
observations may be dynamic (correlated) [10]. For stopping, we assess fn as a functional
approximation of the p.d.f. given more data. Thus, fn can be accepted as an approximation of
fnþk; k ¼ 1; 2; . . . ; if fn is shown to converge and be close to its asymptotic value.
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The Bayesian decision framework [17] requires quantification of the loss function,
Lðfn; fnþkÞ; associated with using fn as the approximation of fnþk: In [13], it was shown that
the choice

Lðfn; fnþkÞ ¼ ln
fnþk

fn

� �
ð13Þ

is appropriate for density approximation under very general conditions. Its expected value}i.e.
the Bayesian risk}is

Rn;k ¼
Z

ln
fnþk

fn

� �
dFðy; dnþk; . . . ; dnþ1jDnÞ ¼ Enþkjn½KLDðfnþkjjfnÞ�; k; n51

using (6). Enþkjn½�� denotes expectation with respect to the k-step-ahead predictor, f ðdnþk; . . . ;
dnþ1jDnÞ: Expanding (13), then

Rn;k ¼
Xk
k¼1

Enþkjn½KLDðfnþkjjfnþk�1Þ�

If fn is a bounded martingale with respect to the s-algebra generated by the observations, Dn;
then fn converges almost surely [20], and so Enþkjn½KLDðfnþkjjfnÞ�!n!1 0: Given these
considerations, a minimum Bayes’ risk criterion for stopping after N observations is

N ¼ minfn : Rn;k5e; 8k51g ð14Þ

for a chosen small stopping threshold, e: This sequential stopping rule [10] is computationally
expensive, since multi-step predictors, f ðdnþk; . . . ; dnþ1jDnÞ; k ¼ 1; 2; . . . ; must be computed at
each sampling time, n: A simpler version of the stopping rule examines only the realized risk,
given n observations, in accepting fn�1 as an approximation of fn

N ¼ minfn : KLDn5eg where KLDn � KLD½fnjjfn�1� ð15Þ

and KLD½�� is defined in (6). Note that a computationally tractable stopping rule is essential, if
the cost of its implementation is not to outweigh the cost of the sampling it proposes to stop.
The following result provides guidance in setting the value of e:

Lemma 3
If

fn � fn�1

fn�1

����
����5e a:s: 8y 2 Yn

where e is a small positive constant, then 04KLDn5e:

Proof
Given the stated condition, then lnðfn=fn�1Þ � ðfn=fn�1Þ � 1 2 ð�e; eÞ: Hence

Efn ½lnðfn=fn�1Þ� ¼ KLD½fnjjfn�1� 2 ð�e; eÞ

Since KLD50; it follows that 04KLD5e: &
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The necessity of the condition is not proved. Nevertheless, it encourages the setting of e
as the maximum relative change allowed in the update fn�1 ! fn: A typical value for
conservative stopping is 0.01 (i.e. 1%). A more detailed analysis can be based on the results
in [21].

Remark 1 (Modelling of KLDn)
The stopping rule (15) may be strongly dependent on the data realization, Dn: Outlier sensitivity
can be reduced by modelling the sequence of realized KLDs, KLDn: The following choice is
appropriate:

KLDn ¼
1

nc

� �
zn; zn �

i:i:d:
LNð1; rÞ; n ¼ 1; 2; . . . ð16Þ

where c > 0; and LNð1; rÞ denotes the log-normal distribution [1] for positive, multiplicative,
modelling error, zn: In this case, lnðznÞ �Nð0; rÞ; the normal density with zero mean and
variance r: (16) is an appropriate choice for modelling a simple monotonic decrease in positive
quantity, KLDn: The least squares (LS) estimate of c after n samples is found by standard
methods [22] to be

#cn ¼ �
Pn

i¼1 lnðKLDiÞ lnðiÞPn
i¼1 ln

2ðiÞ
; n ¼ 1; 2; . . . ð17Þ

Note that (i) this may be estimated recursively using just one multiplication and one division,
which is an acceptable overhead for stopping, and (ii) the posterior mean estimate of c}which,
for this model, differs from the LS estimate above}requires estimation of r; and,
correspondingly, more computations. Given (ii), and the fact that �#cn lnðnÞ is the modelled
value of lnðKLDnÞ; it cannot be used directly in the predictive stopping rule (14). However, (15)
may be replaced by the following criterion:

N ¼minfn : LKLDn5lnðeÞg

LKLDn ¼ � #cn lnðnÞ ð18Þ

An appropriate choice of e is the n-dependent value en ¼
ffiffiffiffi
#rn

p
; though, once again, computations

can be saved by employing a fixed value, such as in Lemma 3.

3.2. Convergence of Dn ¼ Dð #Fn; nnÞ

We return to i.i.d. learning of the non-parametric Dirichlet process, F (1). After n i.i.d.
observations of x; i.e. given the current i.i.d. set, fxgn; our knowledge of F is expressed by
Dn ¼ Dð #Fn; nnÞ (8). For stopping, the question arises as to when the sequence, Dn; has converged
in some manner, so that learning via i.i.d. sampling might be considered to be ‘complete’. Our
approach is to examine the KLD for the induced (parametric) Dirichlet distributions on
increasingly refined partitions, PK ; of Xn: For the present, we assume that F is stationary, an
assumption we will relax in Section 4.

Theorem 1
Let F � Dð #F0; n0Þ � D0; with #F0 > 0 a.s., and n0 > 0: Then, F jfxgn � Dð #Fn; nnÞ � Dn; n ¼
1; 2; . . . ; using (8), and the associated sequence of predictors is Fn ¼ #Fn; using Lemma 2.
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Consider a K-cell finite measurable partition, PK ¼ fXn
1 ; . . . ;X

n
Kg; K51; in ðXn;AÞ; such that

F!QPK p 2 DK (Definition 1). Then:

(i) The sequence of measures induced by Dn forms a non-zero, bounded martingale
with respect to the s-algebra generated by fxgn: The convergent sequence of associated
KLDs is

KLD½DnjjDn�1;PK � ¼ cðnn #FnðXn

kn
ÞÞ � ln½nn #FnðXn

kn
Þ � 1� � ½cðnnÞ � lnðnn � 1Þ� ð19Þ

where, using (2)

kn ¼ QPK
½xn� ð20Þ

(ii) The sequence of predictors induced by Dn forms a non-zero, bounded martingale with
respect to the s-algebra generated by fxgn: The convergent sequence of associated KLDs is

KLD½FnjjFn�1;PK � ¼ ln
nn � 1

nn

� �
þ #FnðXn

kn
Þ ln

nn #FnðXn
kn
Þ

nn #FnðXn
kn
Þ � 1

 !
; K52

¼ 0; K ¼ 1 ð21Þ

The convergent sequence of associated reverse KLDs is

KLD½Fn�1jjFn;PK � ¼ ln
nn

nn � 1

� �
þ

nn #FnðXn
kn
Þ � 1

nn � 1
ln

nn #FnðXn
kn
Þ � 1

nn #FnðXn
kn
Þ

 !
; K52

¼ 0; K ¼ 1 ð22Þ

Proof

(i) The proof of the first statement follows trivially from Definition 1; i.e. from (3)

F !
QPK

p� Dð#pn; nnÞ

This sequence of induced Dirichlet distributions is known to be a bounded martingale with
respect to s-algebra generated by fxgn [10], positive given the stated condition. From (8)

nn #Fn ¼ nn�1 #Fn�1 þ dxn ð23Þ

xn falls in the knth bin of the partition (20). Hence, from (23)

nn #FnðXn

kn
Þ ¼ nn�1 #Fn�1ðXn

kn
Þ þ 1

and so

nn #pn ¼ nn�1 #pn�1 þ 1kn ð24Þ

Here, 1k; k ¼ 1; 2; . . . ;K ; is the kth elementary vector in RK :Using (24) in Lemma 1, noting
that nn ¼ nn�1 þ 1 (8), and recalling that #pn;kn � #FnðXn

kn
Þ; the result (19) follows.

(ii) From Lemma 2 and Definition 1

Fn ¼ #Fn !
QPK

#pn
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Since Dð#pn; nnÞ is a bounded martingale with respect to the s-algebra generated by fxgn;
and since #pn is its expectation, then #pn is itself a bounded martingale, positive given the
stated condition. Hence

KLD½FnjjFn�1;PK � ¼KLD½#pnjj#pn�1�

¼
ð6ÞXK

k¼1

#pn;k ln
#pn;k
#pn�1;k

� �

¼K52 ð1� #pn;kn Þ ln
nn � 1

nn

� �
þ #pn;kn ln

#pn;kn
#pn�1;kn

� �

where we have used (24) in the first term on the right-hand side. Using (24) once again in
the final term above, result (21) follows. When K ¼ 1; #pn ¼ #FnðXnÞ ¼ 1; and, similarly,
#pn�1 ¼ 0: Hence, KLD½�� ¼ 0 (6). The result (22) for the reverse KLD follows in the same
way. Note, finally, that all the expressions in the Theorem are bounded since the term

nn #FnðXn

kn
Þ � 15n0 #F0ðXn

kn
Þ > 0 a:s:

under the conditions of the theorem. &

Remark 2 (Behaviour for large n)
Using standard expansions [15] of cðxÞ and lnðxÞ; then it may be shown that

KLD½DnjjDn�1;PK � !
1

nn

1� #FnðXn
kn
Þ

2 #FnðXn
kn
Þ

" #
; n large

This confirms the martingale requirement that (19) converge to zero, and is in agreement with
the model (16) for the choice c ¼ 1: Similarly

KLD½FnjjFn�1;PK � !KLD½Fn�1jjFn;PK �

!
1

n2n

1� #FnðXn
kn
Þ

2 #FnðXn
kn
Þ

" #
; n large

in agreement with (16) for the choice c ¼ 2:

Remark 3 (Partition-dependent stopping)
Theorem 1, along with Remark 1, can provide an operational stopping rule for i.i.d. learning of
a Dirichlet process. Essentially, a fixed partition, PK ; is chosen a priori, and the counts (12), kn;k;
k ¼ 1; . . . ;K ; are accumulated for each partition cell, Xn

k ; according to update (24)

kn ¼ kn�1 þ 1kn ; n ¼ 1; 2; 3; . . .

initialized by counts derived from the parameters of the DPP

k0;k ¼ n0 #F0ðXn

k Þ; k ¼ 1; . . . ;K

A stopping rule consistent with Bayes’ risk minimization (15) would then employ either of the
KLDs (19) or (21), modelled via (16), i.e. the stopping rule (18). The choice (19) will be more
conservative, for the reason given in Remark 2.

This stopping rule is, per se, parametric, and so does not address the two limitations of
parametric stopping listed at the beginning of Section 3. In particular, the dependence of the
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stopping on the choice and cardinality, K ; of the chosen partition, PK ; is of concern. For
example, in the trivial case of one-symbol quantization ðK ¼ 1Þ; then KLD ¼ 0 8n51; so N ¼ 1
for all KLD choices in Theorem 1.

Note, finally, that

Dð #Fnðx1; . . . ;xnÞ; nnÞ !
QPK

Dð#pn; nnÞ

Dð #Fnð %xk1 ; . . . ; %xknÞ; nnÞ !
QPK

Dð#pn; nnÞ

where the statistics of #Fn (8) are now shown explicitly, and %xk are the quantized values of the i.i.d.
samples (Definition 1). This expresses the fact that i.i.d. learning of induced (parametric)
multinomial, p; via Dirichlet distribution, Dn; requires storage only of the counts, kn (12), for the
quantized data, f %xgn: In contrast, learning of F via Dn requires storage of the exact record, fxgn;
via the sufficient function, #Fn (8).

3.3. A partition-independent KLD for the Dirichlet process

Consider any sequence of increasingly refined, finite partitions, PK � A; with increasing
cardinality K : The phrase in italics is to mean that

lim
K!1

#FnðXn

k Þ ¼ 0 a:s: 8k; n ð25Þ

Then, from (3)

Dð #Fn; nnÞ !
QPK

Dð#pðKÞn ; nnÞ � DðKÞn

i.e. DðKÞn is the sequence of Dirichlet distributions induced on DK � RK with respect to the
partition refinement schedule, PK ; K ¼ 1; 2; 3; . . . : The general concept of divergence between
parametric measures was studied in [23], in the context of quantization. In particular, the
properties of a sequence of divergences between the measures induced by a partition refinement
schedule was studied. If this sequence converges for any refinement schedule, then it converges
for all refinement schedules. This result provides the essential pathway to construction of a
partition-independent KLD between non-parametric DPPs. We exploit the fact that the Dirichlet
distribution, Dn; induced by PK is indeed parametric for K51: The non-parametric case is
found in the limit as K !1; but only if such a limit exists. The Lemma which follows will
provide pointers to how we might construct such a partition-independent limit.

Lemma 4
Consider the sequence,Dn � Dð #Fn; nnÞ; of posterior distributions of the Dirichlet process, F ; under
i.i.d. learning, with 14n51; n0 > 0 and #F0 > 0 a.s. The associated sequence of predictors of x is
Fn ¼ #Fn (Lemma 2). Then the following properties hold for associated (partition-free) KLDs

(i) KLD½DnjjDn�1� ¼ þ1 a:s:

(ii) KLD½FnjjFn�1� ¼ þ1 a:s:

(iii)
KLD½Fn�1jjFn� ¼ ln

nn
nn�1

� �
a:s: ð26Þ
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Proof
All results follow immediately from the identities in Theorem 1, by considering any partition
refinement schedule, PK ; as defined by (25). Under the stated conditions, From (8)

n0 #F0ðXn

kn
Þ ! 0þ a:s:

where the superscript ‘þ’ denotes ‘from above’. Hence, from (8)

#FnðXn

kn
Þ !

1þ

nn
a:s: ð27Þ

Qualitatively, the nth i.i.d. sample falls, a.s., into a cell devoid of point masses (arising either
from degeneracies in #F0 or from the previous i.i.d. samples, fxgn�1), in the limit of any
partition refinement schedule. Substituting (27) into (19) and (21), the first two results
follow, respectively. Substituting (27) into (22), and using l’Hopı̂tal’s rule, the result (26)
follows. &

Notes

(a) From (26),

KLD½Fn�1jjFn� !
1

nn
; n large

in agreement with model (16) for the choice c ¼ 1:
(b) Using (26), the following simple stopping rule may be used, without the need for model

(16):

N ¼ min n : ln
nn
nn�1

� �
5e

� �
ð28Þ

with unique deterministic solution

N ¼
expðeÞ

expðeÞ � 1
� n0

	 

ð29Þ

Here, d�e denotes the smallest integer greater than or equal to the argument. An effective
stopping rule should take account of the disposition of xn with respect to previous
samples, fxgn�1; and with respect to the prior base measure, #F0: The rule (28) fails in these
respects. Furthermore, (26) is a reverse KLD, and so a Bayes’ risk interpretation (Section
3.1) of stopping rule (28) cannot be advanced. Nevertheless, Lemma 3 shows that the
stopping rule does bound the relative change in predictor Fn: This consideration, along
with the intuitive appeal of the test statistic (28), recommends it as a stopping rule for
i.i.d. learning with Dirichlet processes.

(c) For completeness, we note that

KLD½Dn�1jjDn� ¼ þ1 a:s:

under the conditions of Lemma 4.
(d) Result (i) above is a direct consequence of the fact that Dn; 8n; assigns probability zero to

any continuous probability measure on ðXn;AÞ [6, 8]. Partition refinement induces these
zero-probability continuous distributions, causing divergence of the associated KLDs.
Other non-parametric priors [6] might be considered as a means of overcoming this
difficulty.
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3.4. Data-dependent stopping

Convergence of the KLD with increasing n is certain for any finite partition (Remark 2). We
now consider a schedule where the partition is refined in tandem with the number of i.i.d.
samples, so as to achieve a bounded partition-free KLD suitable for non-parametric
stopping.

Lemma 5
Consider i.i.d. sampling, xn � F ; n ¼ 1; 2; 3; . . . ; from the Dirichlet process F on ðXn;AÞ; such
that F jfxgn � Dð #Fn; nnÞ (8). Define the data-dependent sequence of quantizers (2) QPKn

; such
that F!QPKn pKn

: Here, K � Kn is the number of cells in the data-dependent partition, PKn
� A;

after n i.i.d. samples, and pKn
is the finite parameter synonymous with the induced multinomial

in DKn
(3). Let Kn ¼ OðgðnÞÞ when n is large. Then

lim
n!1

KLD½DnjjDn�1;PKn
� ¼ lim

n!1
KLD½DnjjDn�1� ¼ 0 a:s: ð30Þ

if and only if

05g0ðnÞ51 ð31Þ

where g0ðnÞ denotes the derivative of gðnÞ: In words, the KLD converges and is partition-
independent iff the partition is refined more slowly than the rate of accumulation of samples.

Proof

(i) For partition independence in the limit, PKn
must constitute a partition refinement

schedule [23], such that (25) be satisfied. Hence, Kn must be monotonically increasing for
large n; requiring that gðnÞ be a monotonically increasing function. This proves the lower
bound in (31).

(ii) If condition (30) is imposed on (19), then we require that

lim
n!1

nn #FnðXn

kn
Þ ¼ þ1 a:s: ð32Þ

This, in turn, requires that n increase more rapidly than the number of cells, Kn; when n is
large. This proves the upper bound in (31). &

Notes

(a) (30) is a necessary condition for Dn to be a bounded martingale with respect to the s-
algebra generated by the i.i.d. samples fxgn:

(b) (30) suggests the following data-dependent stopping rule:

N ¼ minfn : KLD½DnjjDn�1;PKn
�5eg ð33Þ

which}though again partition-dependent}is guaranteed to achieve partition indepen-
dence as n!1 (i.e. for e! 0). The rule is informal in the sense that this limit is not
reached if e > 0; meaning that Kn5n4N51: Nevertheless, the stopping rule greatly
improves on the fixed partition case, using (19) and (21).

(c) There are many partition refinement schedules that satisfy the conditions of the Lemma.
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(d) If (30) holds for the sequence of predictors, Fn (21), then the associated data-dependent
stopping rule is

N ¼ minfn : KLD½FnjjFn�1;PKn
�5eg ð34Þ

In fact, inspection of (21) reveals that (30) is satisfied for the predictor sequence, Fn; under
the weaker condition

05g0ðnÞ41 ð35Þ

(e) The realized KLD sequences in (33) and (34) may be modelled as in Remark 1}i.e. using
the modelled KLD in the stopping rule (18)}so as to improve robustness to outliers
occurring in the realized i.i.d. data, fxgn:

3.5. A proposal for a data-dependent partition refinement schedule

The final choice of schedule satisfying Lemma 5 must be made pragmatically

(1) the computational cost of evaluating the KLD at each n is strongly influenced by the way
in which the repartitioning, PKn�1 ! PKn

; takes place;
(2) we must examine the influence of PKn

on the sequence of KLDs at finite n:

Note, from (19) and (21), that the principal computational overhead is associated with re-
evaluation of #FnðXn

kn
Þ; i.e. the measure on the partition cell occupied by the new sample, xn; in

the re-defined partition, PKn
: This, in general, requires re-quantization (classification) of the

entire i.i.d. sample set, 8n

fxgn !
QKn f %xgn

The effort can be significantly reduced if the repartitioning minimally disturbs the cells, but care
is needed to ensure that the partition is actually being refined in this case.

Consider a partition refinement schedule where the partition vertices, vk; are chosen
coincident with the i.i.d. samples, fxgn: In this case, the number of cells is Kn ¼ nþ 1: In order
to quantize xn in this case, the following ordered vertex set, must be maintained:

VðnÞ ¼ fvð1Þ; . . . ; vðnþ2Þg ¼ f
%
x; fxgðnÞ; %xg; n ¼ 0; 1; 2; . . . ð36Þ

where fxgðnÞ ¼ sort½fxgn� denotes the ordered set of i.i.d. samples with kth element xðkÞ;
%
x and %x

are appropriate bounding elements of Xn; and fxgð0Þ ¼ fxg0 ¼ fg by convention. Update (24)
now becomes

nn #FnðXn

kn
Þ ¼ n0 #F0ðXn

kn
Þ þ 1 ð37Þ

where Xn
kn

is the new cell delimited by xn and its neighbour, vðknþ1Þ; in the ordered set VðnÞ: (37)
follows from (8) and the fact that Xn

kn
is solely occupied by xn under this partition refinement

schedule. A straightforward and admissible ordering scheme for Xn � Rm is to sort fxgn in any
one of the m co-ordinates, with Pnþ1 then defined by partitioning Rm along this co-ordinate. In
general, this requires that the marginal prior base measure be available for this co-ordinate, so
that #F0ðXn

kn
Þ (37) can be evaluated.

Under this proposal, g0ðnÞ ¼ 1; failing condition (31) in Lemma 5. However, (35) is satisfied,
and so this partition refinement schedule is appropriate for use with the stopping rule for
predictors (34).
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By way of illustration, we now give the algorithm for data-dependent stopping using the
proposed partition refinement schedule. For further clarity, we assume that Xn ¼ ½

%
x; %x� � R;

equipped with the usual s-algebra of Borel subsets, B: Thus, the Dirichlet process, F ; is
expressible as an unknown univariate, finitely supported distribution. The realized KLD
sequence (34) is modelled recursively via (16)–(18).

Algorithm 1 (Realization-dependent stopping (scalar case))

n ¼ 0
Vð0Þ ¼ fvð1Þ; vð2Þg ¼ f

%
x; %xg % ordered partition vertices at n=0

choose %N; e; n0; #F0; #gðxÞ0; a0; b0 % choose #gðxÞ0 consistent with #F0

initialize LKLD0 ¼ lnðeÞ þ 1 % ensure starting
for ðLKLDn > lnðeÞÞ AND ðn5 %NÞ

n ¼ nþ 1
nn ¼ nn�1 þ 1
realize xn � F
#gðxÞn ¼ #gðxÞn�1 þ

1
nn
½gðxnÞ � #gðxÞn�1� % recursive moment tracking via Eq. (11)

VðnÞ ¼ fvð1Þ; . . . ; vðnþ2Þg ¼ sortfVðn�1Þ;xng % insert xn into ordered vertex set
kn ¼ fk : xn ¼ vðkÞg % QPnþ1 ½xn� (2) is the position of xn in VðnÞ
#p0;kn ¼ #F0ðvðknþ1ÞÞ � #F0ðxnÞ % interpreting #F0 as a c.d.f.
#p0;kn ¼

vðknþ1Þ�xn
%x�

%
x

% special case when #F0 is the uniform on ½
%
x; %x�

KLDn ¼ ln½1� 1
nn
� þ 1

nn
ð1þ n0 #p0;kn Þ ln½1þ

1
n0 #p0;kn
� % Eq. (21), using Eq. (37)

an ¼ an�1 þ lnðKLDnÞ lnðnÞ
bn ¼ bn�1 þ ln2ðnÞ % recursive update of (17)
#cn ¼ �an

bn
LKLDn ¼ �#cn ln n

end

N ¼ n
report #gðxÞN

4. THE NON-STATIONARY DIRICHLET PROCESS, Ft � Dð #Ft; ntÞ

We now consider the case where the Dirichlet process, F (1), is non-stationary. We examine how
our state of knowledge, expressed by the DPP, D0; can be updated in order to track this non-
stationary behaviour. The update is supplemental to any data-based learning D0 ! Dn (8)
which may be taking place as a result of i.i.d. sampling, fxgn; from F :

Let Ft be a non-stationary, non-parametric, unknown marginal distribution (i.e. random
process) on ðXn;AÞ; 8t; where t 2 R is the independent index against which the process varies (it
is referred to as ‘time’, but might equally denote frequency, space, etc.).

Definition 2 (Stationarity interval)
The stationarity interval is a prior knowledge object associated with the non-stationary process
Ft; and is defined as follows:

T ¼ maxfzjFt ¼ Ftþz a:s: 8tg
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We will assume that T > 0: The stationarity interval has a ‘natural’ meaning in most
applications, corresponding, for example, to (i) the sampling period of incoming data for a
system, (ii) the minimum possible time between operator interventions in an industrial process,
etc. It is used to calibrate the time axis.

Let t ¼ 0; 1; . . . (a discrete time index) be the total number of complete intervals, T ; observed
since t ¼ 0 (i.e. since the beginning of the observation window). Equivalently, t is the index into
the changepoint set, tt ¼ tT : Let the associated sequence of unknown (marginal) distributions on
ðXn;AÞ be denoted by Ft: As before, our task is to model the non-parametric process Ft; 8t: In
the context of the DPP (1), we need to elicit, for example, the following marginals:

Ft � Dð #Ft; ntÞ � Dt; t ¼ 0; 1; . . .

For the time being, we suppress the subscript ‘n ¼ 0; 1; . . .’ associated with i.i.d. learning (1), (8),
returning to it in the next section. Under Definition 2, this prior measure is a.s. constant in the
time interval ½tt; ttþ1Þ: One way to model the transitions is to justify closure of the marginal
Dirichlet measure under the update, i.e. Dt ! Dtþ1; and deduce appropriate transition rules on
the parameters, #Ft ! #Ftþ1 and nt ! ntþ1 (1). We will approach the problem in this way. This
avoids full modelling of the time series to arbitrary order q ¼ 1; 2; . . . : The latter requires, for
example, a measure, FðqÞ; on the unknown qth-order non-parametric distribution, F ðqÞ; on
extended measure space, ððXnÞq; ðAÞqÞ: We assume that this is unavailable.

4.1. Non-parametric stabilized forgetting

An optimized forgetting operator was proposed in [11] as a means of parameter tracking in non-
stationary parametric time-series analysis. It copes with situations where no explicit transition
model is available. In this section, we verify that this concept extends successfully and tractably
in the non-parametric context. Following [11], but in the context of non-parametricmeasures, we
make the following modelling assumptions about the unknown distributions, Ft; t ¼ 0; 1; 2; . . .:

F0 �F0

Ftþ1 �Ft with probability lt

Ftþ1 �Fa
tþ1 with probability 1� lt ð38Þ

lt is a sequence of known forgetting factors and Fa
t is a sequence of known alternative

distributions for non-parametric Ft: For convenience, we assume that all non-parametric
process distributions, F; are finite, non-null, and defined on identical measurable spaces, ðFn;
AF Þ (Section 2).

Denote by Fp the parametric measure induced on DK by F; via quantization operator QPK

(Definition 1). In the non-stationary case

Ft !
QPK

Fp;t and Ft !
QPK

pt ð39Þ

so that pt � Fp;t: For any such partition, then, from (38), the minimum Bayes’ risk decision
(Section 3.1) in respect of the updated parametric measure, Fp;tþ1; is

Fp;tþ1 ¼ argmin
Fp

fltEFp;t ½LðFp;Fp;tÞ� þ ð1� ltÞEFa
p;tþ1
½LðFp;F

a
p;tþ1Þ�g ð40Þ

where LðFp;Fp;tÞ; for example, is the loss associated with the decision Fp; when Fp;t is the true
distribution on ðXn;AÞ: In common with [11], we use the reverse KLD to approximate the
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expected loss

EFp;t ½LðFp;Fp;tÞ� ! KLD½FpjjFp;t� ð41Þ

Under the stated conditions for F; the required KLDs exist and are finite. It has been shown in
[11] that the unique solution of (40) under assignment (41) is

Fp;tþ1 / ðFp;tÞ
lt ðFa

p;tþ1Þ
ð1�ltÞ ð42Þ

We choose this minimizer for every finite measurable partition, PK � A: More generally,
it is this operator (42) that we use to construct the measure on the unknown probabilities,
ðFtþ1ðA1Þ; . . . ;Ftþ1ðAqÞÞ; for every finite set, ðA1; . . . ;AqÞ; of pairwise disjoint sets, Ai 2 A

(Section 2). Then there exists a unique non-parametric process prior on ðFn;AF Þ which induces
them [8]. It is denoted by

Ftþ1 �Ftþ1 / ðFtÞ
lt ðFa

tþ1Þ
ð1�ltÞ ð43Þ

Notes

(1) (42), with (39), defines the non-parametric stabilized forgetting operator, (43), being true
for any partition, PK � A:

(2) (42) is not the minimum Bayes’ risk decision, since the unreversed KLD, i.e. KLD½Fp;tjjFp�;
is the Bayes’ risk in approximating Fp;t by Fp; as discussed in Section 3.1 [13]. (41) was
chosen since any parametric distribution belonging to the exponential family [1] is closed
under this operator. This is confirmed for the case of the Dirichlet distribution in the next
Lemma. The minimum Bayes’ risk decision chooses the arithmetic mean operator in place
of the geometric mean (42). The resulting binary mixture requires a projection step back
to the exponential family [24].

Lemma 6
The space of Dirichlet process distributions is closed under non-parametric stabilized
forgetting (43).

Proof
Let F be a non-parametric process on ðXn;AÞ; with prior

F � ½Dð #F ; nÞ�l½Dð #Fa; naÞ�ð1�lÞ

04l41: Consider any PK � A; such that F!QPK p (Definition 1). Using the definition (42) of
the non-parametric operator (43), and recalling the definition of the Dirichlet distribution, D (3),
then

p� ½Dð#p; nÞ�l½Dð#pa; naÞ�ð1�lÞ

Here, #p and #pa are the multinomials induced on PK by #F and #Fa; respectively. Using (3)

p� b�1ðn; na; #p; #pa; lÞ
YK
k¼1

p
ln#pkþð1�lÞna #pak�1
k wDK

ðpÞ ð44Þ

Noting that
PK

k¼1 #pk ¼
PK

k¼1 #p
a
k ¼ 1; then, from (44)

p� Dð#pl; nlÞ ð45Þ
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with

nl ¼ lnþ ð1� lÞna ð46Þ

#pl ¼
1

nl
½ln#pþ ð1� lÞna #pa� ð47Þ

with normalizing constant, bð�Þ in (44), given by að#pl; nlÞ (3). Since (45) is true for all finite,
measurable partitions, then, by Definition 1 of the DPP [8]

F � Dð #Fl; nlÞ

with nl given by (46) and

#Fl ¼
1

nl
½ln #F þ ð1� lÞna #Fa� &

4.2. Stabilized forgetting and flattening for the non-stationary Dirichlet process

We make the following modelling assumptions concerning the non-stationary process Ft:

F0 �Dð #F0; n0Þ

Fa
t ¼Dð #Fa

t ; n
a
t Þ; t ¼ 1; 2; . . . ð48Þ

with an associated sequence of forgetting factors lt (38). Then, using non-parametric stabilized
forgetting (Lemma 6), Ft is distributed approximately as a Dirichlet process 8t

Ftþ1 �Dð #Ftþ1; ntþ1Þ; t ¼ 0; 1; 2; . . .

#Ftþ1 ¼
1

ntþ1
½ltnt #Ft þ ð1� ltÞnatþ1 #F

a
tþ1�

ntþ1 ¼ ltnt þ ð1� ltÞnatþ1 ð49Þ

In this sense, Ft is approximately a non-stationary Dirichlet process. As will be seen in the next
section, this is important for ensuring a tractable learning schedule for Ft:

Consider two special cases:
I Stabilization via the Prior:

Fa
t ¼ Dð #F0; n0Þ; t ¼ 1; 2; . . .

Substituting into (49)

Ft ¼ Dð #F0; n0Þ; t ¼ 0; 1; 2; . . .

II Exponential forgetting (flattening): If nat ¼ 0 (48), then Fa
t ¼ Dð0Þ; t ¼ 1; 2; . . . ; the non-

informative DPP (Section 2.5.1). Then, from (46) and (47), and assuming for simplicity that
lt ¼ l; we have

Ft � Dð #F0; l
tn0Þ; t ¼ 0; 1; 2; . . .

This is a much weaker update than the stabilized update (49), since limt!1 Dð #Ft; ntÞ ¼ Dð0Þ in
this case.
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5. LEARNING FOR THE NON-STATIONARY DIRICHLET PROCESS

We now consider the substantive task, namely, learning for Ft under i.i.d. sampling at all times
t ¼ 0; 1; 2; . . . : We summarize the following key points:

* The stabilized forgetting operator commutes with the Bayes’ rule operator (i.e. prior-to-
posterior updating) in the parametric case [11]. By considering the measures induced for
any partition, PK � A (42), we see that the non-parametric operator (43) possesses the
same property.

* The space of Dirichlet process distributions is closed (i.e. conjugate) under i.i.d. sampling
from Ft (8).

* The space of Dirichlet process distributions is closed under stabilized forgetting (Lemma 6).

Taken together, these reveal an important rôle for the DPP in ensuring a tractable algorithm for
tracking of non-parametric processes.

Definition 3 ( %N)
Consider the task of learning Ft via i.i.d. samples, fxt;1;xt;2; . . .g; taken during the tth
stationarity interval, whose duration is T (Definition 2). If d is the time taken to generate one
i.i.d. sample and complete the associated updates (8), then %N ¼ bT=dc; is the maximum allowable
number of i.i.d. samples per stationarity interval. Here, b�c denotes the greatest integer less than
or equal to the argument.

We assume that there are 04Nt4 %N i.i.d. samples available from Ft at each time t50

fxgt;Nt
� fxt;1; . . . ;xt;Nt

g ð50Þ

Our knowledge, modelled by the Dirichlet process distribution Dt;n; evolves in response to two
distinct and interleaved events:

(i) stabilized forgetting at each changepoint, indexed by the first subscript, t: We adopt
stabilization via the prior (case I in Section 4.2), and a constant forgetting factor, lt ¼ l;

(ii) i.i.d. learning}indexed by the second subscript n}during each stationarity interval. The
required updates are governed by (8).

From (8) and (49), the posterior distribution of the non-stationary Dirichlet process, Ft; is
(t50; n50)

Ftjfxgt;n �Dð #Ft;n; nt;nÞ

nt;n ¼ n0;0 þ wNþðtÞ
Xt�1
j¼0

lt�jNj þ n

#Ft;n ¼
1

nt;n
n0;0 #F0;0 þ wNþðtÞ

Xt�1
j¼0

lt�jNj
*Fj;Nj
þ n *Ft;n

" #
ð51Þ

where
F0 �Dð #F0;0; n0;0Þ

*Fj;Nj
¼

1

Nj

XNj

i¼1

dxj;i
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are, respectively, the DPP and the empirical distribution (9) based on the i.i.d. sample set, fxgj;Nj

(50), gathered during the jth stationarity interval. Hence, the sufficient statistics are the entire
archive of i.i.d. samples, j ¼ 0; . . . ; t:

5.1. The stopping rule for i.i.d. learning of Ft

Algorithm 1 may be used to determine the stopping number, Nt; in each stationarity interval.
The data-dependent partition refinement schedule proposed in Section 3.4 implies that the
required set of ordered partition vertices, Vðt;nÞ; after n i.i.d. samples in stationarity interval, t; be
comprised of the entire archive of i.i.d. samples. Two immediate difficulties arise:

(1) the cost of storing and sorting this set prohibits its use for stopping when t is large;
(2) Kt;n ! þ1 for t large, where Kt;n is the current number of cells in the partition (Lemma

5). In contrast, forgetting ensures that nt;n remains finite (51). Hence, the condition (31) is
violated, as is the weaker condition (35), leading to failure of the associated stopping rules
(33) and (34).

An appropriate adaptation of the partition refinement proposal (Section 3.4) is to decimate the
partition vertex set, Vðt�1;Nt�1Þ (36), at each changepoint, t; i.e. to transmit only a fraction of the
i.i.d. samples for use in partitioning Xn during the next stationarity interval. If the fraction is
chosen equal to l (51), then the number of (interior) vertices is always equal to nt;n � n0;0: Of
course, the active cell, Xn

kt;n
(20), is now no longer solely occupied by xt;n: Hence, evaluation of

the required probability measure #Ft;nðXn
kt;n
Þ (in (21)) necessitates quantization (and, therefore,

storage and sorting) of the entire i.i.d. archive, obviating the benefits of the vertex decimation
proposed above. Consider, therefore, an approximation which}at changepoint t}replaces the
latest i.i.d. set, fxgt�1;Nt�1

; with a set quantized with respect to the newly decimated vertex set,
Vt;0: Then, the i.i.d. samples are always coincident with the partition vertices, sole occupancy is
re-established for all partition cells, and so #Ft;nðXn

kt;n
Þ is again evaluated simply, via (37). Note

that this quantization of fxgt�1;Nt�1
does not have to be implemented, and so the net

computational requirement at each changepoint is merely to decimate the vertex set, Vðt�1;Nt�1Þ

(36), keeping fraction l:
From (51), and using the decimated refinement schedule above, the following procedure is

revealed for (on-line) learning of the non-stationary Dirichlet process, Ft: For convenience, we
again assume that ðXn;AÞ ¼ ðRm;BÞ; and track the posterior mean #gðxÞt;n of gðxÞ recursively,
using (11). In the algorithm below, recall, from (36), that Vðt;nÞ ¼ fvð1Þ; vð2Þ; . . .g refers to the
current set of ordered vertices, vðkÞ:

Algorithm 2 (Learning for the non-stationary Dirichlet process (scalar case))

Vð0;0Þ ¼ fvð1Þ; vð2Þg ¼ f
%
x; %xg % ordered partition vertices at n=0

choose %N; e; n0;0; #F0;0; #gðxÞ0;0; a0;0; b0;0; l
for t ¼ 0; 1; 2; . . .

n ¼ 0
initialize LKLDt;n ¼ lnðeÞ þ 1 % ensure starting
for ðLKLDt;n > lnðeÞÞ AND ðn5 %NÞ

n ¼ nþ 1
nt;n ¼ nt;n�1 þ 1
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realize xt;n � Ft

#gðxÞt;n ¼ #gðxÞt;n�1 þ
1
nt;n
½gðxt;nÞ � #gðxÞt;n�1�

Vðt;nÞ ¼ sortfVðt;n�1Þ;xt;ng % insert xt;n into ordered vertex set
kt;n ¼ fk : xt;n ¼ vðkÞg
#p0;0;kt;n ¼ #F0;0ðvðkt;nþ1ÞÞ � #F0;0ðxnÞ % interpreting #F0;0 as a c.d.f.
KLDt;n ¼ ln½1� 1

nt;n
� þ 1

nt;n
ð1þ n0;0 #p0;0;kt;n Þ ln½1þ

1
n0;0 #p0;0;kt;n

�
at;n ¼ at;n�1 þ lnðKLDt;nÞ lnðnÞ
bt;n ¼ bt;n�1 þ ln2ðnÞ % recursive update of (17)
#ct;n ¼ �

at;n
bt;n

LKLDt;n ¼ �#ct;n ln n
end

Nt ¼ n
ntþ1;0 ¼ lnt;Nt

þ ð1� lÞn0;0
#gðxÞtþ1;0 ¼

1
ntþ1;0
½lnt;Nt

#gðxÞt;Nt
þ ð1� lÞn0;0 #gðxÞ0;0�

#atþ1;0 ¼ #at;Nt
; #btþ1;0 ¼ #bt;Nt

Vðtþ1;0Þ ¼ decimatefVðt;NtÞg % keep fraction l of vertices, preserving
%
x and %x

end

report #gðxÞt;Nt
; t ¼ 0; 1; . . .

Notes

* the prior moment should be chosen consistently with the prior base measure: #gðxÞ0;0 ¼
E #F0;0
½gðxÞ� (11).

* The algorithm initializes the LS estimator of ct (17) via #ctþ1;0 ¼ #ct;Nt
: This is important in

ensuring a stable recursive update even in cases when Nt is small.
* When l! 1; most of the information in the i.i.d. sample, fxgt;Nt

is propagated across the
changepoint at tþ 1: This corresponds to an assumption of very slowly non-stationary Ft:
Conversely, when l! 0; then, from (51), Ftþ1 � Dð #F0;0; n0;0Þ; i.e. the prior distribution.
While this may be appropriate in coping with fast non-stationarities, all learning from
previous i.i.d. sampling has been lost. Hence, the proposed algorithm is appropriate for
slowly non-stationary processes.

5.2. The choice of l

Consider the case of i.i.d. learning of Ft via non-parametric stabilized forgetting (case I in
Section 4.2). Taking Nt ¼ %N (Definition 3) 8t; and assuming that l51; then, from (51)

lim
t!1

nt;Nt
� n1 ¼ n0 þ

%N

1� l
¼ n0 þ sl %N ð52Þ

is the Dirichlet weight at a changepoint, in the long-run. However, %N is the actual number
of i.i.d. samples gathered in the stationarity interval, and so an immediate interpretation of
sl51 is as the number of stationarity intervals since the last actual changepoint in the
random process. This is modelled by the observer, via the prior setting of l; to reflect the
expected dynamics of Ft: For sl ¼ 1þ dl; then a factor dl of the i.i.d. record is
‘remembered’ from the previous stationarity interval (or intervals). For l ¼ dl small,
sl ¼ ð1� dlÞ

�1 � 1þ dl; in which case 100l% of the previous record, fxgt�1;Nt�1
;
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is remembered. For example, about 10% are remembered when l ¼ 0:1: Since stabilized
forgetting is operating here in batch mode, with Ntb1 typically, the considerations above
encourage the setting of l to small or moderate values. This is in contrast to the usual on-line
context for forgetting [11], where, effectively, Nt ¼ 1; 8t:

6. SIMULATION STUDIES

Our purpose in this section is to provide illustrative examples of the application of the Dirichlet
learning algorithms in two important contexts: (i) density estimation (Algorithm 1), and (ii)
tracking of non-stationary random processes (Algorithm 2).

6.1. Comparison of stopping rules for i.i.d. learning

Stopping rules for i.i.d. learning of an unknown probability measure, FðxÞ; on ðR;BÞ are
compared. Student’s t-distribution [1] is chosen as the true underlying measure. Its parametric
probability density is

Sðxjm; r; zÞ ¼
Gððzþ 1Þ=2Þ
Gðz=2ÞGð1

2
Þ

1

rz

� �1=2

1þ
1

rz
ðx�mÞ2

� ��ðzþ1Þ=2
where E½x� ¼ m 2 R; r 2 Rþ is a scaling parameter, and z 2 Rþ is known as the ‘degrees-of-
freedom’ parameter. In the current simulations, we choose

xn�
iid

Sðxj20; 1
3
; 3Þ

whose small value of z induces a strongly non-Gaussian density with heavy tails (Figure 1). The
non-parametric prior is, as always in this work, Dirichlet (1)

F � DðUð�100;þ100�; 3Þ
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Figure 1. Left: Student’s t-distribution, f ðxÞ ¼Sðxjm; r; zÞ; for m ¼ 20 and r ¼ 1
3
: The degrees-of-freedom

parameter is z ¼ 3 (full) and z ¼ 300 (dashed), for which case f ðxÞ �Nðm; rÞ: Right: Typical sample set,
fxgN ; realized from Sðxj20; 1=3; 3Þ; with stopping at N ¼ 811 (Algorithm 1).
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Here, #F0 ¼ U denotes the uniform measure on the stated interval. Three proposals for stopping
are compared

(1) Algorithm 1;
(2) the data-independent criterion (28);
(3) a simple density estimation approach is considered, based on the principle of maximum

entropy (MaxEnt) [3]. MaxEnt estimates a maximally smooth density consistent with any
evaluated moments #giðxÞn (11). When the mean, #xn; and variance, #s2n; are tracked, then the
MaxEnt density estimate is Gaussian, Nn �Nð #xn; #s2nÞ: A heuristic stopping criterion
examines the KLD between consecutive Gaussian density estimates

N ¼ minfn : KLDðNnjjNn�1Þ5eg ð53Þ

where [10]

KLDðNnjjNn�1Þ ¼
1

2
ln

#s2n�1
#s2n

� �
� 1þ

#s2n
#s2n�1
þ
ð #xn � #xn�1Þ

2

#s2n�1

� �

In all three cases of stopping, the threshold is set at e ¼ 0:01:
A typical sample set at stopping, fxgN ; is illustrated in Figure 1 (right), with stopping induced

at N ¼ 811; using Algorithm 1. Several outliers are realized, being characteristic of this heavy-
tailed distribution. The associated realized sequence of predictive KLDs (21) is plotted in Figure
2 (left), along with the recursively modelled KLD, n�#cn (18), and the data-independent reverse
KLD, lnðnn=nn�1Þ (26). The latter is a far less conservative criterion, and induces stopping
deterministically at N ¼ 98 (29) for the chosen values of e and n0:

The data-dependence of the stopping criterion in Algorithm 1 is explored in a Monte Carlo
(MC) simulation. The realized stopping numbers, N; for 200 repetitions is illustrated in Figure 2
(right). In each trial, the terminal posterior mean, #xN (11), is evaluated (Figure 3) (left). The
realized terminal means for deterministic stopping with lnðnn=nn�1Þ are shown in Figure 3
(centre). Their variability suggests that stopping has occurred prematurely. Finally, the realized
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Figure 2. Left: realized KLD sequence, KLD½FnjjFn�1;Pnþ1� (21), up to stopping, using Algorithm 1 (dots);
modelled KLD, n�#cn (18) (full line); lnðnn=nn�1Þ (26) (dashed line). Right: histogram of stopping numbers in

200 trials with Algorithm 1.
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means under MaxEnt-based stopping (53) are shown in Figure 3 (right). In this case, stopping
occurs a.s. at N ¼ 5; and is therefore unsuccessful.

Clearly, the KLD induced by the Dirichlet process (34) can track higher-order moments of S
not assessed by the MaxEnt-based Gaussian density approximation. Of course, higher-order
moment-matching techniques might be attempted, using MaxEnt or other parametric density
estimators. However, a major advantage of the Dirichlet learning algorithms over any such
parametric methods is revealed by these simulations; namely, these non-parametric techniques
do not depend on any prior choice of moments.

6.2. Tracking of a non-stationary random process

A slowly non-stationary (i.e. broadband) random process is simulated with the following non-
stationary marginal distribution on ðR;BÞ; 8t

xt � Ft ¼Nðmt; rÞ

The time-variant mean is realized from the following AR(1) (AutoRegressive of order 1) process

mt ¼ �ð1� rÞmt�1 þ get

r controls the bandwidth of mt; and is set to r ¼ 10�4 in this simulation, giving a baseband
process. Taking r ¼ 0:3 and g2 ¼ 1:4	 10�4; then the signal-to-noise ratio (SNR) of xt is E½m2

t

�=r ¼ 3:7 dB: Once again, the non-parametric prior is chosen as Dirichlet

F0 � DðUð�100;þ100�; 5Þ

Algorithm 2 was used to track the posterior mean of xt under i.i.d. sampling, i.e. #xt;n (11).
Two choices of forgetting factor were considered, l ¼ 0:1 and 0.7, respectively, and e ¼ 0:01:
The terminal posterior mean, #xt;Nt

; t ¼ 0; 1; . . . ; is plotted along with the realized mean mt; in
Figure 4. We note the following:

(a) The mean squared error (MSE) in tracking mt was found to be �36 dB (l ¼ 0:1) and
�32 dB (l ¼ 0:7) in this simulation. A average saving of about 75% in the amount of i.i.d.
sampling per stationarity interval T (Definition 2) has therefore been achieved, with only
a small reduction in the quality of tracking. l > 0 allows transmission of sampling
statistics across changepoints, t; as discussed in Section 5.2, compensating successfully for
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Figure 3. Terminal posterior means, #xN (11), realized in a Monte Carlo simulation with 200 repetitions.
Stopping was implemented via three different KLDs: KLD½FnjjFn�1;Pnþ1� (21) (left), lnðnn=nn�1Þ (26)

(centre), and KLDðNnjjNn�1Þ (53) (right).
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this reduction in sampling. To underline this point, we note that the MSE rises to �25 dB
when the l ¼ 0:7 stopping numbers, Nt; are used in a naı̈ve scheme that does not
propagate statistics across the changepoints.

(b) The optimal choice of l depends on the bandwidth of the random process, as explained
in Section 2.5. This is controlled by the parameter r in these simulations. In Figure 4
(bottom) (l ¼ 0:7), there is some evidence of slow adaptation of the learning
algorithm. Since sl ¼ 3:3 (52) in this case, an assumption of stationarity over a period
of 3:3T ; or, equivalently, over as many as 3:3 %N i.i.d. samples, is being made. This under-
lines the need to keep l small in most practical situations. The choice l ¼ 0:1 (sl ¼ 1:1)
provides a good compromise between the opposing goals of i.i.d. savings and effective
tracking.

(c) In all cases, Nt ! const: a.s. as t!1: The rate of convergence and the terminal value are
functions of the prior bounds,

%
x and %x (36), and of e:
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Figure 4. The posterior mean, #xt;Nt
(11) (full line), of xt � Ft; with Ftjfxgt;Nt

� Dð #Ft;Nt
; nt;Nt

Þ (8), and
forgetting factor l ¼ 0:1 (top), l ¼ 0:7 (bottom). The realized mean, mt; is also shown (dashed line). The

numbers of i.i.d. samples at stopping, 8t; are plotted on the right-hand side in each case.
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Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2007; 20:000–000

DOI: 10.1002/acs

ACS  949



UNCORRECTED P
ROOF

7. DISCUSSION AND CONCLUSIONS

The Dirichlet process prior (DPP), D; has proved to be a convenient non-parametric model in
most respects. In particular, we have exploited the following three properties:

(1) it is conjugate with respect to i.i.d. sampling from the unknown distribution, F ; leading to
extremely tractable updates of moments (11);

(2) the set of D is closed under the non-parametric stabilized forgetting operator (43),
yielding a very simple algorithm for adaptation of statistics when the Dirichlet process is
slowly non-stationary;

(3) the martingale property of the induced Dirichlet distributions in the case of finite
partitions of Xn allowed a stopping rule to be formulated.

However, a technical difficulty arose in the third task above, when attempting to derive a
partition-independent divergence between successive DPPs under i.i.d. sampling. The DPP
assigns zero probability to the resulting continuous distributions on ðXn;AÞ; and so the effect of
the new i.i.d. sample on our state of knowledge cannot be assessed in such cases. The problem
was circumvented by ensuring that the number of i.i.d. samples grew at least as fast as the
number of partition cells. Some of the other non-parametric process priors available in the
literature specifically overcome this limitation of the DPP, and therefore warrant consideration
for the problem of designing partition-independent non-parametric stopping rules. The mixture
of DPP assigns unit probability to the space of continuous distributions [6], and therefore
warrants consideration in the current context.

In Section 3.4, we described one technique for refining the partition successfully, using the
data themselves as the partition vertices. The advantages of the approach were (i) the
a.s. convergence of the predictive KLD (Lemma 5) with an increasing number of i.i.d. samples;
and (ii) the dependence of the stopping criterion only on the realized data and the prior,
Dð #F0; n0Þ: Two disadvantages are also evident: (i) the partition refinement schedule is too fast to
allow convergence of the KLD for the Dirichlet distributions themselves (Lemma 5); and (ii) the
computational overhead in maintaining (i.e. storing and sorting) the set of all i.i.d. sample sets,
fxgt;Nt

; t ¼ 0; 1; 2; . . . ; can become prohibitive, possibly outweighing the cost of maximal i.i.d.
sampling (i.e. up to %N), when t is large. The problem was overcome via a vertex decimation
procedure (Section 5.1). The proposed non-parametric sequential stopping rule (Algorithm 1)
performed well in simulation, leading to a reliable stopping schedule for both stationary and
non-stationary non-parametric processes. The algorithms presented in this paper can be
understood as a Bayesian generalization of simple histogram comparison criteria for stopping,
in that it provides both prior-based regularization, and a schedule for data-based partitioning.
The lnðnn=nn�1Þ rule (28) performed reasonably, but is insensitive to (i) realized values, fxgn; and
(ii) the prior base measure, #F0:

The simulation examples in Section 6 point to the relevance of the non-parametric learning
algorithms in density estimation and tracking of non-stationary random processes. Work will be
reported shortly on the use of these stopping rules in more ambitious practical contexts
involving multivariate density estimation.

Many other data-dependent partition refinement schedules can be proposed to satisfy the
requirements of Lemma 5, and merit further study.

The extension of the stabilized forgetting framework to the non-parametric case can be
important in a wide variety of problems where adaptation is appropriate. An application in
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rejection sampling for difficult parametric distributions will be reported shortly. Its relevance to
Markov chain Monte Carlo (MCMC) techniques, and, in particular, to particle filtering
techniques, merits further study.

The paper addressed only the case of i.i.d. sampling from the Dirichlet process, F : It would be
interesting to examine the possibilities for extending the reported results to dynamic data, using
non-parametric modelling to ‘relax’ the parametric assumptions which are typically made in this
case. The need then arises to model a non-parametric posterior process, Fn; which changes in
response to the arrival of data. Hence, the non-stationary Dirichlet process (Section 4) may be
an appropriate model in this context.

The use of non-parametric Bayesian techniques is synonymous with robustness. Their
eschewing of a known parametric family in favour of a measurable space, ðFn;AF Þ; of
distributions allows robust and flexible inference for problems with significant model
uncertainty. Learning algorithms}such as the stopping and forgetting procedures developed
in this paper}can potentially achieve far greater applicability by relaxing the parametric
assumptions in favour of a non-parametric distribution modelled with a Bayesian non-
parametric process prior.

To conclude, the DPP has been used to derive practical algorithms for learning of non-
parametric processes via i.i.d. sampling. A tractable data-dependent sequential stopping rule
was derived, using the KLD adapted to this non-parametric context. Likewise, a schedule for
stabilized forgetting of i.i.d. samples was derived for non-stationary Dirichlet processes, by
extending the appropriate parametric theory to the non-parametric case. The implied algorithm
for on-line learning of a non-stationary Dirichlet process was reported. Effective tracking of the
process was demonstrated in simulation.
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